Chover-type laws of the k -iterated logarithm for weighted sums of strongly mixing sequences

نویسنده

  • Lorenzo Trapani
چکیده

This note contains a Chover-type Law of the k -Iterated Logarithm for weighted sums of strong mixing sequences of random variables with a distribution in the domain of a stable law. We show that the upper part of the LIL is similar to other studies in the literature; conversely, the lower half is substantially different. In particular, we show that, due to the failure of the classical version of the second Borel-Cantelli lemma, the upper and the lower bounds are separated, with the lower bound being further and further away as the memory of the sequence increases.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

CHOVER-TYPE LAWS OF THE ITERATED LOGARITHM FOR WEIGHTED SUMS OF rhoast-MIXING SEQUENCES

We call this a Chover-type LIL (laws of the iterated logarithm). This type LIL has been established by Vasudeva and Divanji [13], Zinchenko [14] for delayed sums, by Chen and Huang [3] for geometric weighted sums, and by Chen [2] for weighted sums. Qi and Cheng [11] extended the Chover-type law of the iterated logarithm for the partial sums to the case where the underlying distribution is in th...

متن کامل

Chover-type Laws of the Iterated Logarithm for Weighted Sums of Na Sequences

Abstract. To derive a Baum-Katz type result, a Chover-type law of the iterated logarithm is established for weighted sums of negatively associated (NA) and identically distributed random variables with a distribution in the domain of a stable law in this paper.

متن کامل

Asymptotic Behaviors of the Lorenz Curve for Left Truncated and Dependent Data

The purpose of this paper is to provide some asymptotic results for nonparametric estimator of the Lorenz curve and Lorenz process for the case in which data are assumed to be strong mixing subject to random left truncation. First, we show that nonparametric estimator of the Lorenz curve is uniformly strongly consistent for the associated Lorenz curve. Also, a strong Gaussian approximation for ...

متن کامل

Strong Laws for Weighted Sums of Negative Dependent Random Variables

In this paper, we discuss strong laws for weighted sums of pairwise negatively dependent random variables. The results on i.i.d case of Soo Hak Sung [9] are generalized and extended.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017